业内资深专家表示,容性检测技术在传统的人机界面应用中继续受到青睐,如笔记本电脑触控板、MP3播放器、触摸屏显示器和近程检测器等。专家认为,除了利用容性传感器取代机械按钮外,用一点点想象力,再加上人机界面设计的基本原理,将会使很多其它应用也能利用这一技术。如一些应用概念示例,这些概念可以通过采用人体接触检测得到完善。
据悉,这些器件若能在启动器件或进行测量之前先了解器件与皮肤之间的接触质量等相关信息,往往较为有利。器件包括需要紧靠皮肤的医用探针、生物电位电极传感器或者用于固定导管用管的外壳。为确定接触条件,可以在注塑生产过程中将绿色的几个容性传感器电极直接嵌入器件的塑料外壳。主机微控制器读取容性传感器控制器IC上的一些状态寄存器,这些寄存器表示容性传感器离皮肤有多近。随后,主机微控制器上运行的基本检测算法处理状态寄存器信息,以确定各传感器电极与皮肤的接触是否适当。
在传统的容性检测人机界面应用中,人们一般通过手指触碰开始接触传感器电极。这些创新器件则以非传统方式使用容性传感器,用户在人体上放置了一个含有容性检测电极的器件。开发这类应用很简单,但为了构建一个稳定可靠的系统,还是应当遵守一些关键准则。
开发高性能接触检测应用,首先要选择一个合适的电容数字控制器(CDC)。对于应用器件表面与皮肤的接触是直接通过能量的细微变化测量的,这种能量变化分布在容性传感器电极阵列中,当器件与皮肤发生接触时就会产生。这种测量的精度取决于CDC模拟前端的灵敏度和传感器电极的数量。采用传统PCB工艺制造的容性传感器精度通常在50fF至20pF范围内,因此使用16位CDC的高精度测量技术是比较理想的。
在选择CDC时,首先要明确一些关键特性,例如带16位ADC的高分辨率模拟前端、可编程传感器灵敏度设置、可编程传感器失调控制、片内环境校准、支持理想数量传感器电极的充足容性输入通道,以及无需使用外部RC器件进行传感器校准的集成设计。这些特性均支持可靠而灵活的应用,带来最佳用户体验。例如,可编程灵敏度可使界面设计人员针对具体应用预设最佳的传感器灵敏度,而非采用可能导致较差灵敏度的固定解决方案。可编程失调控制对界面设计人员是另一个重要特性,因为每一个生产批次的传感器板的失调值可能都会略有不同。快速预表征允许在将新传感器板投入量产之前更改主机固件设置。对于环境温度或湿度预计会发生变化的应用,片内环境校准可实现更可靠的解决方案。请注意,电极传感器是使用标准PCB铜迹线构建的;基板的属性会随温度和湿度的变化而改变,因此将会改变传感器输出的基线电平。如果CDC支持片内校准,这种基线漂移就可以在产品使用中得到动态补偿。
测量的目标是确定设备与皮肤的紧靠程度;皮肤与设备的接触质量越好,设备的读取就越准确。测量的准确度取决于分布在器件接触面区域的电极传感器的数量(电极越多,分辨率越高)和大小。对于应用器件的表面区域一般很小,需要设计人员在开发应用时采用小型传感器电极。
为了可靠测量与小传感器电极相关的小电容变化(一般小于50pF),需要使用高灵敏度模拟前端控制器。请记住,塑料覆盖材料的类型和厚度会进一步影响传感器透过塑料发射的小信号。控制器的模拟前端测量必须具有足够的灵敏度来测量这种小信号,同时在所有工作条件下(例如不同的电源电压、温度和湿度以及覆盖面材料的厚度和种类),在测得信号和阈值电平检测设置之间保持较好的信号余量。较低的信号余量会增加误检和传感器不稳定的风险。为了最大程度降低风险,当使用带16位ADC的CDC时,在传感器基线电平(传感器没有与皮肤接触)与接触阈值电平之间应保持至少1000LSB的余量。